

Modeling Biological Hydrogen Production

Breaking the Hydrogen Barrier

Jack Shultz Hydrogen@Home & TFCLS

Presentation Overview

- Hydrogen@Home: Alpha Project
 - Conceptual Development
 - Studying Scientific Methods
 - Preparation for Eventual Analysis
- I. Hydrogen: The Energy Carrier
- II. Light \rightarrow Algae \rightarrow H₂
- III. Economy of Scale
- IV. Computational Problems
- V. Hydrogen@Home Objective

Section I - Hydrogen: The Energy Carrier

- Rationale
 - H2 from water →
 »Non-Polluting & Renewable =
 Sustainability
 - Marketability

 Technical Hurdles

Hydrogen: The Energy Carrier

- Proton Exchange Membrane (PEM) Hydrogen Fuel Cells
 - Twice as efficient thanCombustion
 - Water vapor emissions
 - Theoretical 4x as efficient with membrane proteins

Section II Light → Algae → H₂ Chlorella Algae Farm

Normal Photosynthesis

Taiz and Zeiger, Plant Physiology, 4th edition

History of Hydrogen

- 16th Century Paracelsus first described H₂
- 1783, Antoine Lavoisier named it Hydrogen
- 1910 1914 Hydrogen Zeppelin flights carried 35,000 passengers without incident.
- 1937 Hindenburg destroyed over New Jersey
 - Hydrogen widely assumed the cause
 - Later investigations pointed to aluminized fabric coating & static electricity that ignited.
 - Damage to Hydrogen's Reputation, despite safety measures

Bio-Hydrogen Milestones

- 1939 Hans Gaffron algae can produce hydrogen.
- 1997 Professor Anastasios Melis deprived sulfur. Hydrogenase, catalyzes reaction.
- 2006 University of Bielefeld & University of Queensland mutate *Chlamydomonas reinhardtii* produce 5x more. 1.6-2.0 % energy efficiency.
- 2007 Anastasios Melis achieved 15% Light conversion
- 2007 Copper added algae produce hydrogen

Some Relevant Research Institutes

Regulation of Genes Required for Nitrogen Fixation in Anabaena Heterocysts	Texas A&M Research Foundation	\$ 193,662 NSF 2008
Generating electrical power by coupling aerobic microbial photosynthesis to an electron-harvesting system	University of Maryland Biotechnology Institute	\$ 90,000 NSF 2008
Spectroscopic and Computational Mapping of Biological and Biomimetic Hydrogenase Mechanisms	Montana State University	\$ 299,691 NSF 2008
Biological Water Splitting, Maria Ghirardi & Michael Seibert	US Department of Energy, National Renewable Energy Labs	

Areas Of Corn Switchgrass and Algal Photobioreactors Required in the US to Displace All Gasoline or Diesel Consumed

National Renewable Energy Laboratory

Land Requirements for Global Demand

Land Area Requirements

- US DOE Target \$13.53 / kg
- Bio-Reactor Production Rate 2,585 Btu / m² D⁻¹
- World Primary Energy Consumption (Btu) 2005
 - 462.798 (Quadrillion (10¹⁵) Btu) Annual
 - 1.27 (Quadrillion (10¹⁵) Btu) Daily Consumption
- Total Land Area Requirements for Daily Consumption
 - $\overline{-3.46}$ Million km²
 - Size of India
- Alternative Approaches
 - Vertical Bio-Reactors
 - Algae grown on Ocean Platforms

How to Break the Hydrogen Barrier?

Section IV Computational Problems

- OXYGEN SHUTS IT DOWN!
- Purpose of Computer Analysis
- 1. Improve Understanding of a System
- 2. Enable Theoretical Predictions

Relevant Applications for NREL

- Computational Material Science (VASP, Wien2k)
- Computational Chemistry (Gaussian, NW Chem)
- Computational Biology (Charmm)
- Large Scale Molecular Dynamics (NAMD)
- Computational Fluid Dynamics (Ansys, Fluent)
- Scientific Libraries (LAPACK, BLAS, FFTs, HDF (Hierarchical Data Format))
- Docking Simulations (FTDock, AutoDock)

Applications For Hydrogen@Home

- Sequence Analysis BLAST
- Protein Structural Homology Analysis
- Model Molecular Affinities Docking
- Probabilistic Molecular Behavior Monte Carlo
- Deterministic Molecular Behavior Molecular Dynamics (Semiempirical QM & MM)

Topics to Study

- 1. Enzyme Screening & Enzyme Design
 - Need Better Understanding of Reaction
 - Difficult to Automate Analysis
- 2. Oxygen Diffusion Studies
 - Many approaches
 - Published methods Molecular Dynamics
 - Possibility to Compare Simulations w/ Empirical evidence

Oxidation Mitigation Approach (OMA)

- Oxygen membranes transport
 - Analogous to Competitive Inhibition of Enzymes except reversed
 - Docking Oxygen to Protein competing for Oxygen against Hydrogenase
 - Molecular Dynamics of Protein Oxygen
 Complex

Resource Requirements

- OMA requirements for Docking & Dynamics
 - Protein Data Bank > 50,000 & growing
 - Narrow to membrane proteins < 3,000
 - − ~100 different Docking parameters each interaction
 - 1 hr simulation time
 - − ~100 MD Each Docking complex
 - 8 hrs to simulate 250 ps, w/ 50,000 atoms, 2 CPU
 - Nano-timescale for all simulations Brute Force
 - 200,000 CPU years plus error checking
 - We must filter our data sets

Unknowns & Project Requirements

- Resources Requirements for Force Field Parameterization
- Method for Automating our Molecular Dynamics analysis
 - Formatting Protein Files, < 10,000 atoms
 - Guessing appropriate simulation parameters
- Quality of Predictions
 - Need benchmark laboratory comparisons
 - How to measure statistical relevance

Success Stories

- Integrating Autodock4
 - User interface for Docking Simulations
 - Analyzed Ferredoxin Binding to Hydrogenase
- Integrating CP2K for Molecular Dynamics
 - Ran Test workunits
 - Looking to improve integration
 - Studying ways to automate MD

Section V Hydrogen@Home Objectives

- PASTA Past, Present & Future
 - Production
 - Enzyme models Too Problematic for now
 - Screen for O₂ transport Exploring
 - Application Eventually model proton transport enzymes
 - Storage & Transport looking for ideas
 - Assess Environmental Impact
 - OWill Model H₂ Behavior in Ozone
 - Will Model Impact caused by Algae

For Extra Fun

• http://www.youtube.com/watch?v=r9vniN54Aok

Thank You

- David Anderson, Carlos Barrios-Hernández, Derrick Kondo, Arnaud Legrand
- Special Thanks to NREL researchers Maria Ghirardi & Mike Seibert

